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The importance of the presence of a small fraction of vacancies in a crystal structure is demonstrated from
considerations of thermodynamic stability. We include in the density functional theory the effects due to the
distortion of the lattice structure surrounding the vacancy and show that the free energy is less when vacancies
are present. Near freezing point, our theoretical model obtains the equilibrium vacancy fraction in the hard
sphere crystal to be �10−5 and it decreases with increase of the density.
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I. INTRODUCTION

A characteristic property of the crystal state is imperfec-
tion in the lattice structure �1�. Among the several types of
defects that occur in a crystal, we consider here the situation
in which a small fraction of the lattice sites remain vacant.
The presence of these point defects constitutes an intrinsic
feature for the thermodynamic stability of the crystal. Den-
sity functional theory �DFT� �2–5� has been used to study the
thermodynamics of the crystal state in a variational ap-
proach. Here the free energy of the system is treated as a
functional of the density function. Beyond the freezing point,
the inhomogeneous density function n�r� for the crystalline
state corresponds to the minimum value of the free energy
for the system. A crucial input in these theories is the choice
of the density function. n�r� is often parametrized �6� as a
summation over Gaussian profiles centered around different
lattice points in the crystal. The inverse square of the width
of the Gaussian profile, denoted by � �henceforth called the
width parameter �WP��, represents the degree of inhomoge-
neity of the structure considered. Thus the liquid or the ho-
mogeneous density state corresponds to �→0 while the in-
homogeneous crystal state corresponds to a large �
representing strongly peaked Gaussian density profiles.
There have been several theoretical attempts �7–9� in the past
to justify the small vacancy concentrations in the crystal
close to freezing point. However, incorporating such a subtle
effect in a theoretical model constructed from a proper sta-
tistical mechanical approach has remained a challenge. In the
present paper we propose a model for an imperfect crystal in
which the distortion created by a vacancy in the surrounding
density profile is described through a modification of the
inhomogeneous density function n�r�, defined in the classical
density functional theory of simple liquids �2–5�. The modi-
fied density function is now used for the minimization of the
free energy. The thermodynamic functions for the solid state
with strongly inhomogeneous density profile are obtained us-
ing the modified weighted density functional approximation
�MWDA� �10�. Here the inhomogeneous liquid is mapped
into an effective liquid whose density is computed from the
MWDA equations and the free energy is then obtained using

standard formulas for the liquid state. The optimum value of
the defect concentration obtained here is of O�10−5� at freez-
ing, which is close to the experimental and simulation re-
sults.

II. THE MODEL

The formulation of the density functional theory pre-
sented here involves two major steps, namely, �a� the proper
parametrization of the density function describing the equi-
librium crystalline state and �b� computation of the free en-
ergy as a functional of the density.

A. The density function

The first step in constructing the DFT model is the choice
of a suitable inhomogeneous density function n�r� for repre-
senting the crystal state with vacancies. The inhomogeneous
density function n�r� for an imperfect crystal is constructed
so as to include the effect of vacancies on the surroundings
as follows. The sites around each vacancy are labeled as
affected sites �AS’s� due to the neighboring void. Thus the
total number of AS’s is zND, assuming that the vacancies are
few enough so that no AS is common to two or more va-
cancy sites. All other N−zND occupied sites on the lattice are
treated as normal sites �NS’s�. The density function n�r� is
obtained as a sum of the contributions from two types of
Gaussian profiles with WP’s �D �AS’s� and � �NS’s�,

n�r� = �
�=1

N−zND

����r − R��� + �
i=1

ND

�
�=1

z

��D
��r − R�

i �� , �1�

where ���r�= �� /��3/2e−�r2
. In Eq. �1� above, �a� Ri denotes

the position of the ith vacancy; �b� R�
i denote the coordinates

of the z AS’s with �=1, . . . ,z around each ith vacancy; and
�c� R� denotes the position of the �th NS. For the vacant
site, no Gaussian profile is attributed. Also, ���D, i.e., the
density profiles centered around an AS are different from
those around a NS. We assume here �in making a single
choice for �D� that this difference in mass localization occurs
symmetrically around the vacancy, and only up to the first
coordination shell. For a fcc crystal, the number of AS’s
around a vacancy is thus z=12. The numbers of AS’s zi

A,
NS’s zi

N, and vacancies zi
D in the different coordination shells

around an AS in a fcc lattice are shown in Table I.*Electronic address: shankar@mail.jnu.ac.in
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B. The free energy functional

We consider a canonical ensemble of N particles occupy-
ing the Npc lattice sites of a face centered cubic �fcc� crystal
in a volume V. Here, Npc=N+ND, such that the number ND
of sites are unoccupied and represent vacancies in the lattice.
The parameter A=N /Npc denotes the fraction of occupied
sites in the crystal. The free energy is expressed as a func-
tional of the inhomogeneous density function n�r�. It consists
of the ideal gas contribution Fid and the interaction part Fint,
i.e., F=Fid+Fint. The particle density and vacancy density
are, respectively, denoted by n0=N /V and nD=ND /V. The
ideal gas part for a crystal lattice with any of the N sites
occupied out of Npc total sites is obtained as

�Fid = ln� N!ND!

�N + ND�!	 +
 dr n�r��ln��3n�r�� − 1� �2�

where � is the thermal wavelength appearing due to the
momentum variable integration in the partition function. It is
assumed that the vacancies are uniformly distributed in the
system, occurring only as monovacancies, and that all the
possible arrangements with a given number of vacancies are
equally probable �1�. The first term in Eq. �2� can be ex-
pressed in terms of the fraction A as Npc�A ln A+ �1
−A�ln�1−A�� by using Sterling’s approximation. The sec-
ond term on the right-hand side �RHS� of Eq. �2� is a con-
tribution from the particles being treated as an ideal gas. The
partition function of an ideal gas of N particles is ZN
= �V / ��3N!��N and the free energy −�F=ln ZN is obtained as
N ln n−N. The second term is a simple generalization of the
ideal gas part of the free energy for a nonuniform density,
i.e., n→n�x�, and can be obtained in a statistical mechanical
formalism using the cell approach �11�. In the limit of large
� and �D, i.e., for strongly localized density profiles in the
crystal, the density can be approximated in terms of Gauss-
ians centered around a single site. This reduces the ideal gas
part of the free energy given in Eq. �2� to

�f id�n� =
npc

n0
�A ln A + �1 − A�ln�1 − A�� + 
3

2
ln��

�
	 −

5

2
�

+
3

2
z
nD

n0
ln��d

�
	 , �3�

where f id denotes Fid /N, the ideal free energy per particle,
and z is the number of affected sites around a vacancy.

For computing the excess part of the free energy, we use
the modified weighted density approximation �12� in the
present calculation. In this approach the excess free energy
depends upon the global average of the density rather than
the local average density. This technique has been exten-
sively used, especially for studying the first order phase tran-
sition in hard sphere systems. In this treatment, the excess
part of the free energy functional of the inhomogeneous
structure is approximated as the liquid state free energy of a
homogeneous system with density n̂ as Fint=Nf int�n̂�, where
f int represents the excess free energy per particle of the ho-
mogeneous state. Here n̂ is the average density of the solid
normalized with weight function w�r�. n̂ is specified by re-
quiring that the second functional derivative of the MWDA
excess free energy yields the correct direct correlation func-
tion c�r� in the uniform density limit �12�. The weighted
density n̂ is obtained from the self-consistent solution of the
integral equation for the equivalent liquid,

2f int� �n̂�n̂ = −
1

�N

 dr1
 dr2c��r1 − r2�; n̂�n�r1�n�r2�

− n0n̂ f int� �n̂� , �4�

where the prime on f int denotes the derivative with respect to
density. Equation �4� is solved iteratively to obtain n̂. For a
hard sphere system �of diameter 	� we choose the Percus-
Yevick �PY� solution of c�r� and the corresponding free en-
ergy function f int�
̂�, where 
̂=�n̂	3 /6. For this purpose
some simplification of the above equation in terms of the
density function �1� is needed.

The nontrivial task in solving the integral equation �4� is
the evaluation of the first term on the RHS involving the
product of the density at two different points. Using the defi-
nition �1� for n�r� this term reduces to the integral

I�n̂,�,�D� = − ��N�−1�INN��,�, n̂� + IAN��,�D, n̂�

+ IAA��D,�D, n̂�� , �5�

where the integral INN�� ,� ; n̂� represents the “interaction” or
the product of the NS’s in the two densities. Similarly,
INA�� ,�D ; n̂� corresponds to the contribution involving the
NS’s and the AS’s, while IAA��D ,�D , n̂� corresponds to that
involving both the AS’s. Through some trivial algebra these
integrals are expressed in terms of the overlap integral

A�1,�2
�R� = �̄
 dr1
 dr2e−�1r1

2−�2�r2 − R�2c�r12� �6�

where �̄= ��1�2 /�2�3/2, r12= �r1−r2�, and the R denotes the
distance between the corresponding sites. We obtain

INN��,�� = �N − zTND�IB + ND�
i=2

4

ziIi�, �7�

where zT=�i=1
4 zi. In writing Eq. �7� we are ignoring overlaps

of the density profiles beyond the fourth shell around the
origin. For the terms contributing to INN two kinds of possi-
bilities occur as shown in the RHS of Eq. �7�. The first term
involving IB=�RA�,��R� represents the contributions result-
ing from the product of two NS’s, both of which are located

TABLE I. The number of AS’s zi
A, NS’s zi

N, and vacancies zi
D in

the different coordination shells around an AS in a fcc lattice. zi

=zi
A+zi

N+zi
D is the total number of lattice sites in the corresponding

shell of the fcc structure.

Shell no. zi
A zi

N zi
D zi

1 4 7 1 12

2 2 4 0 6

3 4 20 0 24

4 1 11 0 12
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in the bulk away from the vacancy. The origin of the second
term involving Ii� is more subtle. The NS’s close to the va-
cancy have AS’s as well as NS’s in their neighborhood. Let
z̃ij

N denote the number of NS’s in the jth shell around such a
NS which itself is located at the ith shell from the vacancy.
The contribution involving such NS’s is given by Ii�
=� j=1

4 z̃ij
NA�,��Rij�. The coordination numbers zi and the z̃ij

N for
a fcc lattice are presented in Tables I and II, respectively. The
distance of the nth shell from the origin is obtained in gen-
eral as Rn /a=�n /2, for a fcc crystal lattice. The lattice con-
stant is a= �4/npc�−1/3 where npc=Npc /V. Similarly we obtain
for the other two integrals in Eq. �5�, IAN�� ,�D ; n̂�
=2�RA�,�D

�R� and IAA��D ,�D ; n̂�=�RA�D,�D
�R�. Further-

more, the � values corresponding to crystals are large
enough so that in the various integrals presented above, the
contribution from sites beyond the second shell is negligible.
The density of the equivalent liquid, i.e., n̂, is obtained by
iterating Eq. �4� for different values of �, �D, and nD. The
integral equation for n̂ is solved iteratively and the interac-
tion part of the free energy is then obtained using the PY
expression.

III. RESULTS

With the above formulation, we compute the total free
energy per particle of the imperfect crystal f = f int�n̂�+ f id�n�
corresponding to a given average number density n0 of the
particles. f id denotes Fid /N, the ideal gas part of the free
energy, and f int is obtained from a solution of Eq. �4�. In the
usual DFT formulation without any vacancy the minimiza-
tion is with respect to the single parameter �. In the present
case the free energy is minimized with respect to all the
parameters nD, �D, and � in the density function. In Fig. 1,
the contour plot of the free energy surface corresponding to
particle density n0

*=1.0, is shown in the nD-�D plane. The
corresponding � �the WP for the NS’s�, i.e., is equal to its
value at the free energy minimum. The different closed con-
tours enclose the minimum free energy point. From the op-
timum values corresponding to the minimum we find that
�D�� in general, conforming with the expectation that the
mass localization is less near the vacancy. The inset shows
the minimum of �f�= f���− fmin with respect to � while the
�D and nD are fixed at their optimum values corresponding to
the free energy minimum.

The often cited illustration for justifying the presence of
vacancies in a crystal involves a simple model for the imper-
fect crystal in which the free energy is written as ND times a
vacancy formation free energy 
v �say� plus the configura-

tional entropy contribution. Using Stirling’s approximation,
the minimization of the free energy of the crystal with re-
spect to the number of vacancies gives the equilibrium va-
cancy concentration ND /N=exp�−�
v� �1�. Thus with this
model the value of 
v is required to be able to obtain vacancy
concentration. From this point of view, our model gives a
first principle estimation �in terms of the basic interaction
potential between the particles� of the vacancy concentration.
To illustrate this, we compute the quantity �fD��Fint /ND,
where �Fint is the difference between the interaction part of
the free energy of the perfect crystal and the one with de-
fects. For the perfect crystal n�r� is parametrized in terms of
only the single Gaussian profile with width � and nD=0. The
free energy F��� is obtained by minimization with respect to
the single parameter �. In order to obtain the energy cost in
creating a vacancy in this perfect structure we compute at the
same value of � the free energy for the imperfect crystal

F̄�nD ,�� minimized with respect to nD. The difference in the
per vacancy free energy, i.e., �fD��F /ND, is shown in Fig.
2 for different values of n0. We also show here for compari-
son the above mentioned result expected from the simple
lattice model, i.e., −ln�ND /N�. It should, however, be noted
that our model does include the effect of the vacancies on the
surrounding, which goes beyond the simple lattice model of
independent vacancies. At higher densities the system be-
comes more compact and it requires more energy to take out
any particle from interior site to the surface. Thus the defect
density nD decrease with the increase of n0 as is shown in
Fig. 3. The free energy of the solid state is compared with
that of the corresponding liquid state. The excess free energy
of liquid state is computed from the Carnahan-Starling equa-
tion of state. This comparison is shown in the inset of Fig. 3
indicating a freezing at n0

*=0.968 beyond which the solid
state is thermodynamically more stable �12�.

It is straightforward to extend our approach to a binary
system. Here a larger set of WP’s ��� is needed to describe
the two inhomogeneous density functions. In the case of or-
dered structures, the sites occupied by each component form

TABLE II. The number z̃ ji
N of NS’s in the ith cell around a NS

that is located in the jth cell around the vacancy.

Shell no. z̃2i
N z̃3i

N z̃4i
N

1 8 10 11

2 5 5 6

3 20 21 20

4 12 10 11

FIG. 1. Constant free energy contours at n0	3=1.0 on the nD �in
units of 	3� and �D plane with fixed �=97.50 �in units of 	2�
corresponding to the minimum. Inset shows variation of �f� /nD

�see text� vs � at nD=3.95�10−5 and �D=76.46 corresponding to
the minimum. �f� is expressed in units of �−1.
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a sublattice and hence the ns�r� has to be defined accord-
ingly. For simplicity we consider here a disordered fcc struc-
ture, in which a given site is assumed to be occupied by
atoms of both components with probabilities equal to the
corresponding relative concentrations. The density profile in-
cluding the vacancy is defined as a generalization of Eq. �1�.
Following Ref. �10� we use the definition ns�r�=xsn�r�,
where ns is the density for the species s and n=n1+n2. The
self-consistent equations for the weighted densities for the
individual components of the binary liquid are obtained fol-
lowing the scheme used for the simpler case �10� without
defects. The expressions for the uniform liquid state excess
free energy and the direct correlation function for the binary
system are obtained from analytic solution �13� of the
Percus-Yevick integral equation for hard sphere mixtures. In

Fig. 4 we have plotted the packing fraction 
= �� /6��n1	1
3

+n2	2
3� of a binary crystal with the corresponding defect den-

sity. The qualitative nature of the dependence of nD on the
packing fraction is similar to that of a one-component sys-
tem. The inset of this figure shows variation of nD with the
diameter ratio � of the two species at fixed value of the
concentration x and density n0. As � increases, the packing
fraction increases because smaller particles are replaced by
larger particles. Hence as in the one-component case the de-
fect density decreases with increase in the packing fraction.
For �→1 the one-component result is recovered and is
shown by the arrow in Fig. 4.

IV. DISCUSSION

The density functional approach studied here considers
whether the equilibrium state of a many-particle system will
be the disordered liquid state or whether the system will
prefer an ordered crystalline structure with inhomogeneous
density distribution. The criterion for determining the pre-
ferred thermodynamic state is the minimization of the free
energy, treated as a functional of the density function. The
only input in the calculation of the free energy is the static
�equilibrium� structure factor of the liquid. Thus using the
basic interaction potential between the particles �which de-
termines the corresponding input static structure factor for
the liquid state� as the only starting point and using the ther-
modynamic extremum principle we are able to justify the
crystalline state with the estimate of the defect concentration
here. No a priori information about the solid state is needed.
The present work is a suitable formulation of the DFT to
include vacancies in the description of the crystal state. In
earlier attempts at this problem using DFT, the modification

FIG. 2. �Color online� ��fD �see text� vs n0 �in units of 	3� and
the corresponding estimate −ln�ND /N� �see text� for defect interac-
tion energy from simple lattice model shown as squares. �fD is
expressed in units of �−1.

FIG. 3. Variation of defect concentration nD with respect to n0

�both in units of 	3�. Inset shows the variation of free energy of
crystal �solid line� and liquid �dashed line� with density. Free energy
is expressed in units of �−1.

FIG. 4. �Color online� Variation of nD �in units of 	2
3� in binary

system with n0 �in units of 	2
3� at fixed concentration x=0.5 and

fixed value of diameter ratio �=0.95. Inset shows variation nD with
� at fixed density n0=1.1 and relative concentration x=0.5. At this
packing fraction, the value of nD in the one-component limit is
indicated with an arrow.
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of the density function is included in an averaged manner
�7,8� or by simply taking the density profiles to be absent for
the vacant sites �9�. More recent work treated it as a limiting
case of an ideal crystal �8�. The value of the vacancy con-
centration was either found to be too high ��10−1 �7�� or
found to be extremely low ��10−12 �9�� for the hard spheres.
The interaction of the defect with its neighbors is missing in
those works. If the number of AS’s is zero, i.e., the crystal
has only the NS’s and the voids, then the present model is
similar to that of Ref. �9�. Using a low-order perturbative
expansion for the solid state free energy �2� around that of
the liquid state, the defect concentration obtained is much
less �9�. The imperfect crystal considered here is character-
ized by monovacancies only and no other defects or disloca-
tions �14� are included in this treatment. The theory pre-
sented here is applied close to freezing. The higher-density
states can be explored in our model by taking a larger num-
ber of affected shells around the vacant sites, and possibly a
better approximation for the c�r�.

The vacancy concentration in solids has also been widely
investigated through experiments and simulations. Losee and
Simmons have calculated the vacancy concentration in kryp-
ton near the triple point by measuring the relative difference
in the bulk volume and the volume measured in x-ray scat-
tering experiments. This is equivalent to measuring the
change in the linear dimension and lattice parameter of the
specimen. The vacancy concentration thus obtained is of the
order of the 10−3 �15�. Using the same technique Schwalbe
has measured the defect concentration in argon solid at
higher temperatures to be not more than 2.5�10−4 �16�. Va-
cancy formation in rare gas solids has also been studied us-
ing Monte Carlo methods. The relative concentration is esti-
mated by calculating the change in the Helmholtz free
energy due to reversibly adding a particle to a single vacancy
crystal. In this way the vacancy concentrations obtained �17�
near the triple point are �2.1�10−4 for argon and �1.9
�10−4 for krypton. Subsequent computer simulations of the
hard sphere crystal obtain a defect concentration of order of
10−5 �18–20�. Reiss and Schaaf �21� also found vacancies in
the hard sphere crystal of the same order.

In our model, the relative vacancy concentration is deter-
mined by the interaction potential which determines the di-
rect correlation function c�r� used as an input here. The
noble gas solids referred to above have a similar hard core
potential as is considered in our theoretical model and hence
the relative defect concentrations ND /N for the two systems
should be the same. However, as noted above for krypton
and argon the defect concentrations at the triple point were
found to be different. The difference in the observed defect
concentrations mentioned above for the two systems was
also found in subsequent simulation studies �17� as well.
This arises from the different values of the excess entropy
used in the corresponding calculation.

The present calculation can be straightforwardly extended
to other crystal structures by constructing the corresponding
description similar to that given in Tables I and II. However,
the extension to ionic systems is more subtle. The density
functional theories of freezing including the MWDA are in
general known to work well for cases where there is appre-
ciable volume change on freezing �22�. As the interaction
becomes more slowly varying, this change decreases, and for
Coulombic interaction there would be effectively no volume
change �23�. The theoretical formulation for such systems
will require extending the DFT to include the attractive part
of the interaction. The appeal of the model presented here
lies in producing a reasonably good estimate of the void
concentration from simple calculations using an intuitive pic-
ture of the physical problem. This is an alternative to a direct
but much more computer intensive method involving a full
quantum-chemical calculation to estimate the void concen-
tration �24�. We obtain an order of nD that is closer to simu-
lation and experimental results than was obtained in earlier
models using a similar DFT approach.
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